0960-894X(95)00434-3

THE SEROTONIN 5-HT4 RECEPTOR: PART 3: DESIGN AND PHARMACOLOGICAL EVALUATION OF A NEW CLASS OF ANTAGONISTS 1.

K.-H. Buchheit, F. Klein, E. Klöppner, H.-J. Pfannkuche, H. Mattes*.

SANDOZ Pharma Limited, Preclinical Research, CH-4002 Basel, Switzerland.

Abstract: The design, synthesis and pharmacological activity of a new class of potent and selective 5-HT₄ receptor antagonists containing an indole nucleus linked to a carbazimidamide are presented. **4c**, a representative member of our new class is a potent competitive antagonist at 5-HT₄ receptors with a pA₂ value of 8.4, displaying selectivity (ranging from 20 to over 1000 fold) versus other serotonin receptor subtypes.

Since its discovery, the knowledge about serotonin (5-HT) and its role in (patho)physiology is steadily growing. 5-HT acts as a key transmitter/mediator in several peripheral as well as central nervous tissues 2. Of the multiple 5-HT receptor subtypes known to date the 5-HT₄ receptor is of special interest due to its implication in various functional responses to 5-HT, both peripherally and centrally 3. In the periphery for example, activation of 5-HT₄ receptors leads to contractions of guinea-pig ileum preparations via stimulation of cholinergic pathways 4, enhancements of "twitch" responses in the electrically-stimulated guinea pig ileum 5 and relaxations of rat muscularis mucosae preparations 6. 5-HT₄ stimulation has also been implicated in certain cardiac effects ⁷ and in the liberation of corticotropin releasing factor (CRF) ⁸. Moreover there is growing evidence that 5-HT₄ receptors play an important role in the brain. Early reports showed an activation of adenylate cyclase 9 and effects on EEG energy 10 by 5-HT₄ receptor stimulation. More recent publications attempt to pinpoint central 5-HT4 receptor function 11. While several functional responses, especially in the periphery, were identified applying 5-HT₄ receptor agonists, there is currently little knowledge about the consequences of 5-HT₄ receptor blockade ¹². Although a number of antagonists acting at 5-HT₄ receptors have been described, poor receptor selectivity and/or short duration of action in vivo have limited their use as pharmacological probes. These antagonists can be classified into two structurally different classes of compounds namely indole-3-carboxylic esters typified by 1 (SB 203186) ¹³ and benzoic esters exemplified by 2 (SDZ 205-557) ¹⁴. More recently, compounds with much greater selectivity for the 5-HT₄ receptor subtype have been reported. These include RS-23597-190 15, GR 113808 16 and SB 204070 17.

Figure 1.

In earlier publications ¹ we reported on the synthesis and pharmacological evaluation of a new class of 5-HT₄ receptor agonists, like 3 (Figure 1), based on an indole nucleus substituted with a carbazimidamide side chain. We describe herein some subtle structural modifications of this basic skeleton which led to potent and selective 5-HT₄ antagonists.

From a design perspective, we speculated that a small displacement of the ligand from its agonist binding site would be sufficient to remove the intrinsic activity of this class of ligands without greatly affecting the affinity for the 5-HT₄ receptor. A thorough inspection of 5-HT receptor models, especially that of the 5-HT_{1D} receptor for which 3 has substantial affinity ¹, revealed the presence of a cluster of aromatic residues which interacts with the indole nucleus of 3. These models were built using the bacteriorhodopsin model as a template by using methods similar to those described previously ^{18,19}. Derivatives of 3, substituted at position 1 and 7 of the indole nucleus, led to small non-bonded interactions with the receptor surface resulting in slight displacements of the ligands from their original locations and were thus chosen as targets. Among several derivatives, the 7-methyl analogues 4a, b, c and 1-ethyl substituted compounds 5a, b emerged as very promising 5-HT₄ antagonists.

The desired 7-methylated derivatives 4 were prepared by standard procedures ¹ from 3,5-dimethyl-4-nitrophenol 6 (Scheme I). Methylation or benzylation followed by reaction with t-BuOCH(NMe₂)₂ and hydrogenation ²⁰ led respectively to the required indole derivatives **7a** and **7b**. Vilsmeier-Haack ²¹ formylation gave aldehydes **8a**, **b** which were condensed with either N-pentyl-N'-aminoguanidine or N-pentyl-N-methyl-N'-aminoguanidine under acidic conditions to afford carbazimidamides **4a** and **9b**, **c**. Hydrogenolysis of the benzyl protecting group finally afforded **4b** and **4c**.

Scheme I.

Reagents: (a) NaH, RX; (b) t-BuOCH(NMe₂)₂; (c) H₂, Pd/C; (d) POCl₃, DMF; (e) N-pentyl-N'-aminoguanidine or N-pentyl-N-methyl-N'-aminoguanidine, MeOH, HCl; (f) H₂, Pd/C.

The azaindole derivatives 10a, b were prepared according to the method described above from 15.15 was obtained as described in Scheme II.. Nitration of 2-amino-4,6-dimethylpyridine 11 followed by treatment

of 12 with POCl₃ yielded the chloride 13. Reaction of 13 with NaOMe yielded 2-methoxy-4, 6-dimethyl-5-nitropyridine 14 which was transformed into the required indole analogue 15 by reaction with t-BuOCH(NMe₂)₂ and hydrogenation. The regioisomeric 4-aza derivative obtained in 30% yield could be separated by flash chromatography.

Scheme II.

$$\begin{array}{c|cccc}
NH_2 & OH & C1 \\
N & b & N \\
N & O & N \\
0 & N \\$$

Reagents: (a) HNO₃, H₂SO₄, 17% yield; (b) POCl₃, 53% yield; (c) MeOH, Na, 72% yield; (d) i, t-BuOCH(NMe₂)₂, ii, H₂, Pd/C,iii, separation of regioisomers, combined 60% yield.

5-HT₄ antagonism was measured in the non-stimulated myenteric plexus longitudinal muscle preparation of the guinea pig ileum 1 , 22 . Antagonist activity was determined using 5-HT as agonist probe. Data were obtained and pA₂ values calculated for each compound applying tissue preparations from at least four guinea pigs. Serotonin caused concentration-dependent contractions of this tissue preparation which were assessed for potential inhibitions by the test compounds. 5-HT was a potent agonist in this assay exhibiting a pD₂ value of 7.5. Potent antagonist activities were found, as highlighted in Table I, for 4b (pA₂ = 8.0) and 5a (pA₂ = 8.8). Methylation of the 5-hydroxy group led to drastic decreases in 5-HT₄ receptor affinity. A similar structure activity relationship demonstrating the crucial role of the free hydroxy substituent for potency as well as intrisic activity has been noted previously with the 5-HT₄ receptor agonist series of indoles. The azaindole ring system proved to serve as a good biosteric replacement for 5-hydroxy indole at the 5-HT₄ agonist recognition site, however, substituted azaindole derivatives such as 10a, b almost completely lack 5-HT₄ receptor affinity, possibly reflecting some subtle divergent electronic factors characterizing the antagonist and the agonist recognition site. 4b,c and 5a represent more potent antagonists at the guinea-pig ileum 5HT₄ receptor than tropisetron or SDZ 205-557.

Table I. 5-HT₄ receptor antagonist activities of carbazimidamides and reference substances. ^a

R ₁ 、 _N									
N NH									
entry	R	R1	pA ₂	Slope					
2	-	•	7.4						
4a	D N N N N N N N N N N N N N N N N N N N	Me	6.8	1.23					
4b	OH N N	Н	8.0	0.83					
4c	OH N	Me	8.4	0.88					
5a	OH N	Н	8.8	0.90					
5b	OH N	Me	7.1	1.43					
10a	H	I I	6.6	1.13					
10Ь	H H H	Н	5.7	1.21					

a. Assay conditions: 5-HT_4 antagonism: ability of compounds to inhibit 5-HT-induced contractions of guineapig ileum preparations. pA_2 values were determined by the method of Arunlakshana and Schild 23 .

The antagonists **4b**, **c** and **5a** were also examined for their selectivity in various receptor binding assays. Table II illustrates the selectivity exhibited by **4b**, **c** and **5a** for the 5-HT₄ receptor. All compounds displayed a high selectivity for 5-HT₄ vs. 5-HT_{1A}, 5-HT_{2A} and 5-HT₃ receptor binding sites. Modest structural manipulation led to profound effects on 5-HT₄ vs. 5-HT_{1D} and 5-HT_{2C} selectivity. For example, N-methylation of **4b**, which displayed almost no 5-HT₄ selectivity, led to **4c** with a twentyfive-fold selectivity for 5-HT₄ over 5-HT_{2C} receptors and a more than 500-fold selectivity for 5-HT₄ vs all other receptors tested.

Table II. Receptor profiles of carbazimidamides and other 5-HT₄ antagonists: pA_2 (5-HT₄) a, and pK_i (all others) b values.

entry	5-HT4	5-HT _{1A}	5-HT _{1D}	5-HT _{2A}	5-HT _{2C}	5-HT3
2	7.4	5.4	5.6	<5	5.4	5.6
4b	8.0	5.6	7.8	6.1	8.1	5.5
4c	8.4	5.3	5.4	6.4	7.1	5.2
5a	8.8	6.1	7.9	5.0	7.7	< 5

a. pA₂ values, 5-HT₄ receptor antagonism was determined in the guinea pig ileum assay. ^b Tissues and [³H]-radioligands used in binding assays: 5-HT_{1A} (pig cortex; [3H]8-OH-DPAT); 5-HT_{1D} (calf caudate, [¹²⁵I] GTI); 5-HT_{2A} (rat cortex, [³H]ketanserin); 5-HT_{2C} (human SF9, [³H]mesulergine); 5-HT₃ (mouse NG108, [³H]ICS 205-930).

In conclusion, the indolecarbazimidamide class affords a novel series of 5-HT₄ receptor antagonists. **4c** represents a potent competitive antagonist of 5-HT₄ receptor-mediated effects in the guinea pig ileum (pA₂=8.4, Schild slope 0.88). It is selective with only moderate affinity for 5-HT_{2C} receptors (pK_i 7.1) and weak affinity for other 5-HT receptor subtypes. Its 5-HT₄ antagonist property in vitro correlates well with potent and long lasting activity observed in preclinical in vivo studies, the results of which will be reported shortly.

REFERENCES

1. For part 1 and 2 of this series, see:

Buchheit, K. H.; Gamse, R.; Giger, R.; Hoyer, D.; Klein, F.; Kloppner, E.; Pfannkuche, H. J.; Mattes, H. J. Med. Chem., 1995, 38, 2326-2330.

and Buchheit, K. H.; Gamse, R.; Giger, R.; Hoyer, D.; Klein, F.; Kloppner, E.; Pfannkuche, H. J.; Mattes, H. J. J. Med. Chem., 1995, 38, 2331-2338.

- 2. Garrison, J. C. The Pharmacological Basis of Therapeutics, 8th ed.; Gilman, A. G.; Rall, T. W.; Nies, A. S.; Taylor, P., Eds.; Pergamon Press: 1990; pp 592-595.
- 3. Bockaert, J.; Fozard, J. R.; Dumuis, A.; Clarke, D. E. Trends Pharmacol. Sci., 1992, 13, 141-145.
- 4. Eglen, R. M.; Swank, S. R.; Walsh, L. K.; Whiting, R. L. Br. J. Pharmacol. 1990, 101, 513-520.
- 5. Craig, D. A.; Clarke, D. E. Br. J. Pharmacol. 1989, 96, 246P.

- 6. Baxter, G. S.; Craig, D. A.; Clarke, D. E. Naunyn-Schmiedeberg's Arch. Pharmacol. 1991, 343, 439-446.
- 7. Kaumann, A. J. Naunyn Schmiedeberg's Arch. Pharmacol. 1990, 342, 619-622.
- 8. Idres, S.; Delarue, C.; Lefebvre, H.; Vaudry, H. Mol. Brain Res. 1991, 10, 251-258.
- 9. Dumuis, A.; Bouhelal, R.; Sebben, M.; Cory, R.; Bockaert, J. Mol. Pharmacol. 1988, 34, 880-887.
- 10. Boddeke, H. W. G.; Kalkman, H. O. Br. J. Pharmacol. 1990, 101, 281-284.
- 11. Reynolds, G. P.; Mason, S. L.; Meldrum, A.; Keczer, S. De; Parnes, H.; Eglen, R. M.; Wong, E. H. F. Br. J. Pharmacol. 1995, 114, 993-998.
- 12. Sanger, G. J.; Gaster, L. M. Exp. Opin. Ther. Patents 1994, 4, 323-334.
- 13. Parker, S. G.; Hamburger, S.; Taylor, E. M. et al. Br. J. Pharmacol. 1993, 108, 68P.
- 14. Buchheit, K. H.; Gamse, R.; Pfannkuche, H. J. Naunyn-Schmiedeberg's Arch. Pharmacol. 1992, 345, 387-393.
- 15. Eglen, R. M.; Bonhaus, D. W.; Clark, R.; Hedge, S.; Leung, E.; Whiting, R. L. Br. J. Pharmacol. 1992, 107, 439P.
- 16. Grossman, C. J.; Kilpatrick, G. J.; Bunce, K. T. Br. J. Pharmacol. 1993, 109, 618-624.
- 17. Wardle, K. A.; Ellis, E. S.; Gaster, L. M. et al. Br. J. Pharmacol. 1993, 10, 15P.
- 18. Trumpp-Kallmeyer, S.; Hoflack, J.; Bruinvels, A.; Hibert, M. J. Med. Chem. 1992, 35, 3448-3462.
- 19. Teeter, M. M.; Froimowitz, M.; Stec, B.; DuRand, C. J. J. Med. Chem. 1994, 37, 2874-2888.
- 20. Haefliger, W.; Knecht, H. Tet. Lett. 1983, 25, 285-288.
- 21. James, P. N.; Snyder, H. R. Org. Synth., Coll. Vol. 4, 1963, 539.
- 22. Buchheit, K. H.; Engel, G.; Mutschler, E.; Richardson, B. Naunyn Schmiedeberg's Arch. Pharmacol. 1985, 329, 36-41.
- 23. Arunlakshana, O.; Schild, H. O. Brit. J. Pharmacol. 1959, 14, 48-58.

(Received in Belgium 3 August 1995; accepted 21 September 1995)